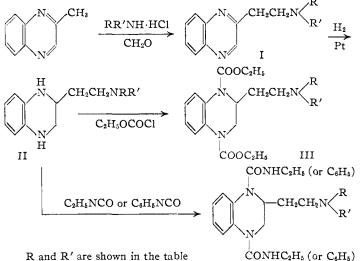
[CONTRIBUTION FROM THE LILLY RESEARCH LABORATORIES]


Pyrazine, Quinoxaline and Tetrahydroquinoxaline Derivatives

BY PAUL F. WILEY

RECEIVED APRIL 16, 1954

A number of pyrazines, quinoxalines and tetrahydroquinoxalines have been synthesized from 2-methylpyrazine and 2-methylquinoxaline via the Mannich reaction.

A number of pyrazine, quinoxaline and tetrahydroquinoxaline derivatives have been synthesized in a search for compounds which would be effective in human helminthic diseases. The new compounds prepared in this work except 2-diethylaminoethylpyrazine are listed in Table I. The method of synthesis for all except 2-diethylaminoethylpyrazine and 2-(2-carbethoxyethylaminoethyl)-quinoxaline is shown in the equation

R and R' are shown in the table

The reaction of 2-methylpyrazine with formalin and diethylamine hydrochloride gave 2-diethylaminoethylpyrazine. This compound was not obtained pure but was converted to its picrate and analyzed as such. 2-(2-Carbethoxyethylaminoethyl)-quinoxaline was synthesized by the reaction of ethyl chloroformate with 2-(2-ethylaminoethyl)-quinoxaline which was obtained by a Mannich reaction from 2-methylquinoxaline.

None of these compounds had appreciable antihelminthic activity.

Acknowledgment.---I wish to thank Mr. W. L. Brown, Mr. H. L. Hunter and Mr. W. J. Schenck for the microanalyses.

Experimental¹

2-Methylpyrazine and 2-methylquinoxaline were pre-2-(2-Diethylaminoethyl)-quinoxaline has been reported by Wear and Hamilton³ but was prepared by the following procedure for 2-(2-dialkylaminoethyl)-quinoxalines.

2-Diethylaminoethylpyrazine.—A mixture of 9.4 g. (0.1 mole) of 2-methylpyrazine, 11.0 g. (0.1 mole) of diethylamine hydrochloride and 8.4 g. (0.1 mole) of formalin was

(1) The boiling points and melting points are uncorrected.

(2) R. G. Jones, E. C. Kornfeld and K. C. McLaughlin, THIS JOUR-NAL, 72, 3539 (1950).

(3) R. L. Wear and C. S. Hamilton, ibid., 72, 2893 (1950).

heated on the steam-bath for 15 hours. One hundred milliliters of ether was added, and the mixture was stirred vigorously while adding sufficient 50% sodium hydroxide solution to make the aqueous layer alkaline. Stirring was continued while the aqueous layer was saturated with solid sodium carbonate. The ether layer was removed and the aqueous layer was extracted with two more 100-ml. portions of ether. The combined ether extracts were dried with magnesium sulfate, filtered and concentrated. The residue was fractionated retaining the fraction boiling at $70-72^{\circ}$ (0.6 mm.), yield 2.7 g. (15%). The product was refrac-

tionated retaining the fraction boiling at the same place; n^{25} D 1.4943.

Anal. Calcd. for C₁₀H₁₇N₃: C, 67.03; H, 9.52; N, 23.46. Found: C, 65.35; H, 9.72; N, 23.20.

The picrate was prepared by adding about 0.5 g. to 20 ml. of alcohol saturated with picric acid and cooling. Three recrystallizations from alcohol gave a product melting at 103-105°.

Anal. Calcd. for $C_{16}H_{20}N_8O_7$: C, 47.06; H, 4.94; N, 20.59. Found: C, 47.08; H, 5.28; N, 20.87.

2-(2-Dialkylaminoethyl)-quinoxalines.-Forty-three and two-tenths grams (0.3 mole) of 2-methylquinoxaline, 0.3 mole of the appropriate dialkylamine hydrochloride and 25 ml. of formalin were mixed. In the cases using dimethyl-amine hydrochloride and diethylamine hydrochloride the reaction mixtures were heated on the steam-bath for 4-5 hours. In the cases using benzylethylamine hydrochloride and piperidine hydrochloride the reaction mixtures were stirred at 50-60° for five hours. Three hundred ml. of water was added and the solution was extracted with two 300-ml. portions of ether. The aqueous layer was made basic with 180 ml. of 10%

sodium hydroxide solution and extracted with three 300-ml. portions of ether. The combined ether extracts were dried with magnesium sulfate. The drying agent was removed and the solvent was evaporated from the filtrate. The residual liquid was then fractionated.

2-(2-Carbethoxyethylaminoethyl)-quinoxaline (Id).mixture of 43.2 g. (0.3 mole) of 2-methylquinoxaline, 24.3 g. (0.3 mole) of ethylamine hydrochloride and 25 ml. of formalin was stirred at room temperature for 24 hours. The reaction mixture was then worked up as described in the preceding paragraph except that the product was not distilled.

The crude 2-(2-ethylaminoethyl)-quinoxaline was dissolved in 36 ml. of dry pyridine, and this solution was stirred while 30 g. (0.27 mole) of ethyl chloroformate in 60 ml. of dry benzene was added dropwise. The reaction mix-ture was maintained at 35-50° by moderate cooling. Stirring was continued until no more heat was evolved. Two hundred and twenty-five milliliters of water was added and the mixture was neutralized by saturation with solid sodium bicarbonate. This was followed by extraction with four 100-ml. portions of benzene. The combined benzene extracts were concentrated by evaporation under reduced pressure. Fractionation of the residual black oil gave 3.9 g. (4.7%) of a light yellow oil boiling at 146-149° (0.2 mm.). Two more fractionations gave the pure product.

2-(2-Dialkylaminoethyl)-1,2,3,4-tetrahydroquinoxalines (IIa, IIb, IIc).—A solution of 0.1 mole of 2-(2-dialkylamino-ethyl)-quinoxaline in 200 ml. of alcohol containing 0.2 g. of platinum oxide was shaken under hydrogen at an initial pressure of 50 lb. per sq. in. and at room temperature until hydrogen uptake ceased. The reaction mixture was fil-

	TABLE I														
	SECTION A CH2CH2NRR'														
No.	Substituents R R'			M.p. o °C.	n^2	δn	Vield, %	Empirical formula	Carbon, % Calcd. Found		Hydrogen, % Calcd. Found		Nitrogen, % Calcd. Found		
Ia.	CH ₃	CH₃		109	0.6	1.5		20.2	$C_{12}H_{15}N_{3}$	71.64	71.66	7.47	7.37	20.89	20.67
Ib	$C_{6}H_{5}CH_{2}$	C₂H₅		153-155		1.5		28.8	$C_{19}H_{21}N_3$	78.35	78.02	7.26	7.10	14.42	14.06
Ic	$(CH_2)_5N$			118	.15	1.5		23.9	C ₁₅ H ₁₉ N ₃	74.69	74.40	7.88	8.19	17.43	17.59
Id	℃ ₂ H₅	C₂H₅C	200	140	.15	1.5	618		$C_{15}H_{19}N_3O_2$	65.93	65.60	6.97	7.24	15.38	15.47
	R″														
	SECTION B (1)														
	N/N/R"														
	M.p. or b.p.														
	R	R'		R"	°C.]	Mm.	.		H 0.01	-		0.01		
IIaª	CH₃	CH3	H		120-12		0.2	74	$C_{12}H_{19}N_3$	70.24	70.53	9.37	9.21	20.49	20.16
IIb	C₂H₅	C_2H_5	H		140-14		.2	85	$C_{14}H_{23}N_{3}$	72.10	71.79	9.88	9.90	18.03	17.85
IIc ^b	C6H5CH2	C₂H₅	H	000	178-18	ð	.2 .7	28	$C_{19}H_{25}N_3$	77.29	77.02	8.48	8.51	14.24	14.07
IIIa	CH₃ C H	CH₃			173		.7.2	81	$C_{18}H_{27}N_3O_4$	61.88	$\begin{array}{c} 61.79 \\ 63.32 \end{array}$	$\begin{array}{c} 7.74 \\ 8.28 \end{array}$	$7.74 \\ 8.38$	12.03	11.58
IIIb	C_2H_5	C₂H₅			160–164		.2	40 40 G	$C_{20}H_{31}N_{3}O_{4}$	63.64	63.32 62.10	8.28 8.37		11.12	11.29
IVa	CH3		CH ₃ C ₂ H ₅ NHCO		127–129 ^d 138–140 ^d			$\begin{array}{c} 49.6 \\ 51.5 \end{array}$	$C_{18}H_{29}N_5O_2$	$\begin{array}{c} 62.24 \\ 64.97 \end{array}$	62.10 65.04	8.88	$\begin{array}{c} 8.21 \\ 8.97 \end{array}$	20.17	19.87
IVb IVc	C₂H₅	C_2H_5 C_2H_5NHCO CH_3 C_6H_5NHCO			138-140 $191-192^{d}$			$\frac{51.5}{47.7}$	$C_{20}H_{33}N_5O_2$	70.42	70.45	0.00 6.58	8.97 6.84	$\frac{18.64}{15.76}$	18.59
IVC IVd	CH₃ C₂H₅	C_{13} $C_{6}H_{5}NHCO$ $C_{2}H_{5}$ $C_{6}H_{5}NHCO$			191-192 148-150 ^d			$\frac{47.7}{25.6}$	C ₂₆ H ₂₉ N ₅ O ₂ C ₂₈ H ₃₃ N ₅ O ₂	70.42 71.31	70.45	7.06	7.00	15.76	15.93 14.72
		^b n ²⁵ D 1	-	-			.1			11.01	11.01	1.00		14,00	14.14
· n ·	р 1.5750.	- <i>n-</i> D I	.094	$a_n \sim n^{-1}D$	1.5322.	- IVI	erting	points	•						

tered, and the filtrate was concentrated by evaporation under reduced pressure on the steam-bath. The residual oil was fractionated.

1,4-Dicarbethoxy-2-(2-dialkylaminoethyl)-1,2,3,4-tetrahydroquinoxalines (IIIa, IIIb).—A solution of 0.1 mole of 2-(2dialkylaminoethyl)-1,2,3,4-tetrahydroquinoxaline in 50 ml. of dry pyridine was stirred while a solution of 23.8 g. (0.22 mole) of ethyl chloroformate in 70 ml. of dry benzene was added dropwise. The reaction mixture was cooled occasionally in order to keep the temperature at about 50°. After the addition of reactants was complete the reaction mixture was stirred at room temperature for two hours. Three hundred milliliters of water was added, and the mixture was neutralized with solid sodium bicarbonate. The organic layer was removed, and the aqueous layer was extracted with two 300-ml. portions of benzene. The extracts were combined with the organic layer, and the solvent was removed by evaporation under reduced pressure on the steam bath. The liquid residue was fractionated under reduced pressure.

bath. The liquid residue was inactionated under reduced pressure. 1,4-Bis-(aryl- or alkylcarbamyl)-2-(2-diethylaminoethyl)-1,2,3,4-tetrahydroquinoxalines (IVa, IVb, IVc, IVd).—A solution of 0.045 mole of the 2-(2-dialkylaminoethyl)-1,2,3,-4-tetrahydroquinoxaline and 0.1 mole of the isocyanate in 100 ml. of dry benzene was refluxed for two hours except in the case of IVc when the reaction mixture was merely heated to boiling. The solvent was removed by evaporation *in vacuo*, and the residue was triturated thoroughly with a mixture of benzene and $60-70^\circ$ petroleum ether except with IVc. In this case the reaction mixture was cooled. The solid was filtered off and recrystallized from a benzenepetroleum ether ($60-70^\circ$) mixture in the cases of IVa and IVb and from alcohol in the cases of IVc and IVd.

INDIANAPOLIS 6, INDIANA

[CONTRIBUTION FROM THE NOVES CHEMICAL LABORATORY, UNIVERSITY OF ILLINOIS]

Restricted Rotation in Aryl Amines. XVI. 4-Substituted 1-Amino-2-methylnaphthalenes

By Roger Adams and Raymond H. Mattson¹

Received April 19, 1954

The optically active forms of N-benzenesulfonyl-N-carboxymethyl-1-amino-2-methylnaphthalene and its 4-chloro and 4bromo derivatives have been synthesized. The relative racemization rates indicate that the halogen-substituted compounds are less stable than the unsubstituted, thus coinciding with the results found in analogous types of molecules. Nitration of N-benzenesulfonyl-1-amino-2-methylnaphthalene results in the formation of N-benzenesulfonyl-1-amino-2-methyl-4-nitronaphthalene.

In several previous papers, the relative rates of racemization of aromatic amines, in which restricted rotation between the nitrogen atom and the ring carbon is present, have been compared. The study of those compounds in which merely a single substit-

(1) An abstract of a thesis submitted by Raymond H. Mattson to the Graduate College of the University of Illinois, 1951, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy; Eastman Kodak Company Fellow, 1947–1948; 1948–1949. uent in a fixed position has been modified has permitted speculation concerning the effect of size of the atom or group and/or of electronic changes upon stability of the molecule.² A sub-group in this

(2) (a) R. Adams and H. W. Stewart, THIS JOURNAL, 63, 2859 (1941);
(b) R. Adams and N. K. Sundholm, *ibid.*, 70, 2667 (1948);
(c) R. Adams and L. J. Dankert, *ibid.*, 62, 2191 (1940);
(d) R. Adams and A. A. Albert, *ibid.*, 64, 1475 (1942);
(e) R. Adams and J. R. Gordon, *ibid.*, 72, 2454, 2458 (1950).